A Ramsey theorem for measurable sets

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The strength of Ramsey Theorem for coloring relatively large sets

We characterize the computational content and the proof-theoretic strength of a Ramseytype theorem for bi-colorings of so-called exactly large sets. An exactly large set is a set X ⊂ N such that card(X) = min(X) + 1. The theorem we analyze is as follows. For every infinite subset M of N, for every coloring C of the exactly large subsets of M in two colors, there exists and infinite subset L of ...

متن کامل

Brooks’s Theorem for Measurable Colorings

Throughout, by a graph we mean a simple undirected graph, where the degree of a vertex is its number of neighbors, and a d-coloring is a function assigning each vertex one of d colors so that adjacent vertices are mapped to different colors. This paper examines measurable analogues of Brooks’s Theorem. While a straightforward compactness argument extends Brooks’s Theorem to infinite graphs, suc...

متن کامل

Ramsey theorem for designs

We prove that for any choice of parameters k, t, λ the class of all finite ordered designs with parameters k, t, λ is a Ramsey class.

متن کامل

A stochastic Ramsey theorem

A stochastic extension of Ramsey’s theorem is established. Any Markov chain generates a filtration relative to which one may define a notion of stopping time. A stochastic colouring is any fc-valued (k < oo) colour func­ tion defined on all pairs consisting of a bounded stopping time and a finite partial history of the chain truncated before this stopping time. For any bounded stopping time 6 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06403-1